Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38352548

ABSTRACT

Plants depend on the combined action of a shoot-root-soil system to maintain their anchorage to the soil. Mechanical failure of any component of this system results in lodging, a permanent and irreversible inability to maintain vertical orientation. Models of anchorage in grass crops identify the compressive strength of roots near the soil surface as key determinant of resistance to lodging. Indeed, studies of disparate grasses report a ring of thickened, sclerenchyma cells surrounding the root cortex, present only at the base of nodal roots. Here, in the investigation of the development and regulation of this agronomically important trait, we show that development of these cells is uncoupled from the maturation of other secondary cell wall-fortified cells, and that cortical sclerenchyma wall thickening is stimulated by mechanical forces transduced from the shoot to the root. We also show that exogenous application of gibberellic acid stimulates thickening of lignified cell types in the root, including cortical sclerenchyma, but is not sufficient to establish sclerenchyma identity in cortex cells. Leveraging the ability to manipulate cortex development via mechanical stimulus, we show that cortical sclerenchyma development alters root mechanical properties and improves resistance to lodging. We describe transcriptome changes associated with cortical sclerenchyma development under both ambient and mechanically stimulated conditions and identify SECONDARY WALL NAC7 as a putative regulator of mechanically responsive cortex cell wall development at the root base.

2.
Plant Direct ; 7(11): e3546, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38028649

ABSTRACT

The Salicaceae family is of growing interest in the study of dioecy in plants because the sex determination region (SDR) has been shown to be highly dynamic, with differing locations and heterogametic systems between species. Without the ability to transform and regenerate Salix in tissue culture, previous studies investigating the mechanisms regulating sex in the genus Salix have been limited to genome resequencing and differential gene expression, which are mostly descriptive in nature, and functional validation of candidate sex determination genes has not yet been conducted. Here, we used Arabidopsis to functionally characterize a suite of previously identified candidate genes involved in sex determination and sex dimorphism in the bioenergy shrub willow Salix purpurea. Six candidate master regulator genes for sex determination were heterologously expressed in Arabidopsis, followed by floral proteome analysis. In addition, 11 transcription factors with predicted roles in mediating sex dimorphism downstream of the SDR were tested using DAP-Seq in both male and female S. purpurea DNA. The results of this study provide further evidence to support models for the roles of ARR17 and GATA15 as master regulator genes of sex determination in S. purpurea, contributing to a regulatory system that is notably different from that of its sister genus Populus. Evidence was also obtained for the roles of two transcription factors, an AP2/ERF family gene and a homeodomain-like transcription factor, in downstream regulation of sex dimorphism.

3.
Nat Methods ; 18(12): 1499-1505, 2021 12.
Article in English | MEDLINE | ID: mdl-34824476

ABSTRACT

Organisms orchestrate cellular functions through transcription factor (TF) interactions with their target genes, although these regulatory relationships are largely unknown in most species. Here we report a high-throughput approach for characterizing TF-target gene interactions across species and its application to 354 TFs across 48 bacteria, generating 17,000 genome-wide binding maps. This dataset revealed themes of ancient conservation and rapid evolution of regulatory modules. We observed rewiring, where the TF sensing and regulatory role is maintained while the arrangement and identity of target genes diverges, in some cases encoding entirely new functions. We further integrated phenotypic information to define new functional regulatory modules and pathways. Finally, we identified 242 new TF DNA binding motifs, including a 70% increase of known Escherichia coli motifs and the first annotation in Pseudomonas simiae, revealing deep conservation in bacterial promoter architecture. Our method provides a versatile tool for functional characterization of genetic pathways in prokaryotes and eukaryotes.


Subject(s)
Gene Expression Regulation, Bacterial , Genes, Bacterial , Genome, Bacterial , Amino Acid Motifs , Arabidopsis/genetics , Binding Sites , Biotin/chemistry , Chromosome Mapping , DNA/chemistry , DNA Barcoding, Taxonomic , Databases, Genetic , Escherichia coli/metabolism , Gene Library , Gene Regulatory Networks , Phenotype , Protein Binding , Pseudomonas/metabolism , Species Specificity , Transcription Factors/metabolism
4.
Nat Genet ; 49(8): 1282-1285, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28692067

ABSTRACT

A defining goal of synthetic biology is to engineer cells to coordinate tasks that often require precise temporal modulation of gene expression. Although a variety of relatively small gene circuits have been constructed and characterized, their logical combination into larger networks remains a central challenge. This is due primarily to the lack of compatible and orthogonal elements for predictable dynamic control of gene expression. As an alternative approach to promoter-level regulation, we explored the use of DNA copy number as a circuit control element. We engineered colony-wide DNA cycling in Escherichia coli in the form of plasmid copy number oscillations via a modular design that can be readily adapted for use with other gene circuitry. Copy number modulation is a generalizable principle that adds a layer of control to synthetic gene circuits, allowing dynamic regulation of circuit elements without requiring specially engineered promoters.


Subject(s)
DNA, Bacterial/metabolism , Escherichia coli/genetics , Chromosomes, Artificial, Bacterial , DNA Copy Number Variations , Gene Expression Regulation, Bacterial , Gene Regulatory Networks , Genetic Engineering , Plasmids
5.
ACS Synth Biol ; 5(1): 8-14, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26332284

ABSTRACT

Culturing cells in microfluidic "lab-on-a-chip" devices for time lapse microscopy has become a valuable tool for studying the dynamics of biological systems. Although microfluidic technology has been applied to culturing and monitoring a diverse range of bacterial and eukaryotic species, cyanobacteria and eukaryotic microalgae present several challenges that have made them difficult to culture in a microfluidic setting. Here, we present a customizable device for the long-term culturing and imaging of three well characterized strains of cyanobacteria and microalgae. This platform has several advantages over agarose pads and demonstrates great potential for obtaining high quality, single-cell gene expression data of cyanobacteria and algae in precisely controlled, dynamic environments over long time periods.


Subject(s)
Environment , Microfluidics/methods , Synechocystis/metabolism , Algorithms , Cell Tracking , Chlorophyll/metabolism , Fluorescence , Microfluidics/instrumentation , Microscopy, Fluorescence , Time-Lapse Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...